Robust feature correspondence and pattern detection for façade analysis. (Mise en correspondance robuste et détection de modèles visuels appliquées à l'analyse de façades)
نویسنده
چکیده
For a few years, with the emergence of large image database such as Google Street View, designing efficient, scalable, robust and accurate strategies have now become a critical issue to process very large data, which are also massively contaminated by false positives and massively ambiguous. Indeed, this is of particular interest for property management and diagnosing the health of building façades. Scientifically speaking, this issue puts into question the current state-of-the-art methods in fundamental computer vision problems. More particularly, we address the following problems: (1) robust and scalable feature correspondence and (2) façade image parsing. First, we propose a mathematical formalization of the geometry consistency which plays a key role for a robust feature correspondence. From such a formalization, we derive a novel match propagation method. Our method is experimentally shown to be robust, efficient, scalable and accurate for highly contaminated and massively ambiguous sets of correspondences. Our experiments show that our method performs well in deformable object matching and large-scale and accurate matching problem instances arising in camera calibration. We build a novel repetitive pattern search upon our feature correspondence method. Our pattern search method is shown to be effective for accurate window localization and robust to the potentially great appearance variability of repeated patterns and occlusions. Furthermore, our pattern search method makes very few hallucinations. Finally, we propose methodological contributions that exploit our repeated pattern detection results, which results in a substantially more robust and more accurate façade image parsing.
منابع مشابه
Automatic Alignment of Histological Sections for 3D Reconstruction and Analysis
In this report, we present a new method of aligning histological sections. First a displacement eld between the two images is computed by block matching. Then we estimate a rigid transformation based on the eld. The process is integrated within a multi-scale scheme. We carefully study the problem of robustness and we propose several ideas to deal with inter-section intensity di erences and back...
متن کاملDiscrete Minimum Distortion Correspondence Problems for Non-rigid Shape Matching
Similarity and correspondence are two fundamental archetype problems in shape analysis, encountered in numerous application in computer vision and pattern recognition. Many methods for shape similarity and correspondence boil down to the minimum-distortion correspondence problem, in which two shapes are endowed with certain structure, and one attempts to find the matching with smallest structur...
متن کاملEtude comparée des performances de SVM multi-classes en prédiction de la structure secondaire des protéines
Résumé. Les SVM bi-classes, introduites en bioinformatique à la fin des années 90, font aujourd’hui référence pour de nombreux problèmes de traitement de séquences biologiques. Les SVM multi-classes, de conception plus récente, sont progressivement appliquées à ces problèmes, singulièrement en biologie structurale prédictive. Dans cet article, nous proposons une étude comparée des performances ...
متن کاملMoving object detection and tracking system : a real-time implementation
Parmi les paramètres plus importants lors de l'optimisation des ressources humaines, on peut compter le nombre de personnes qui entrent ou sortent d'un local, leur temps moyen de permanence et leurs vitesses instantannées et moyennes. Nous presentons un système de detection et suite d'objects en mouvement avec une caméra stationnaire pour calculer ces paramètres. Notre système est capable de de...
متن کاملAnalyse de Programmes Malveillants par Abstraction de Comportements. (Analysis of Malware by Behavior Abstraction)
ion de Comportements par Réécriture de Mots Nous avons vu, en Section 1.2, que l’analyse comportementale classique opérait directement au niveau des interactions observées (les appels de librairie, les appels systèmes...), ce qui rend la détection de comportements suspects peu robuste puisque la moindre modification dans la mise en œuvre d’une fonctionnalité permet de faire échouer la détection...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013